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PyMAF-X: Towards Well-aligned Full-body
Model Regression from Monocular Images
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Abstract—We present PYMAF-X, a regression-based approach to recovering a parametric full-body model from a single image. This
task is very challenging since minor parametric deviation may lead to noticeable misalignment between the estimated mesh and the
input image. Moreover, when integrating part-specific estimations into the full-body model, existing solutions tend to either degrade the
alignment or produce unnatural wrist poses. To address these issues, we propose a Pyramidal Mesh Alignment Feedback (PyMAF)
loop in our regression network for well-aligned human mesh recovery and extend it as PyMAF-X for the recovery of expressive full-
body models. The core idea of PyMAF is to leverage a feature pyramid and rectify the predicted parameters explicitly based on the
mesh-image alignment status. Specifically, given the currently predicted parameters, mesh-aligned evidence will be extracted from
finer-resolution features accordingly and fed back for parameter rectification. To enhance the alignment perception, an auxiliary dense
supervision is employed to provide mesh-image correspondence guidance while spatial alignment attention is introduced to enable the
awareness of the global contexts for our network. When extending PyMAF for full-body mesh recovery, an adaptive integration strategy
is proposed in PyMAF-X to produce natural wrist poses while maintaining the well-aligned performance of the part-specific estimations.
The efficacy of our approach is validated on several benchmark datasets for body, hand, face, and full-body mesh recovery, where
PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new state-of-the-art results. The project page with
code and video results can be found at https://www.liuyebin.com/pymaf-x.

Index Terms—Expressive human mesh recovery, full-body motion capture, monocular 3D reconstruction, mesh alignment feedback.
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1 INTRODUCTION

Ecent years have witnessed the rise of the regression-
based paradigm in recovering body [1], [2], [3], [4],
[5], [6], hand [7], [8], [9], [10], face [11], [12], [13], [14], and
even full-body [15], [16], [17], [18] models from monocular
images. These methods [1], [2], [3], [19] learn to predict
model parameters directly from images in a data-driven
manner. Despite the high efficiency and promising results,
regression-based methods typically suffer from coarse align-
ment between the predicted meshes and image observa- Before PyMAF After PYMAF
tions.

When recovering the parametric body or full-body mod-
els [20], [21], minor rotation errors accumulated along the
kinematic chain may lead to noticeable drifts in joint posi-
tions (see the top-left example in Fig. 1), since joint poses are
represented as relative rotations w.r.t. their parent joints. In
order to generate well-aligned results, optimization-based
methods [21], [22], [23] include data terms in the objective
function so that the alignment between the projection of
meshes and 2D evidence can be optimized explicitly. Similar
strategies are also exploited in regression-based methods [1],
[2], [3], [19] to impose 2D supervisions upon the projection during testing, these deep regressors either are open-loop
of estimated meshes in the training procedure. However, Or simply include an Iterative Error Feedback (IEF) loop [1]

in their architectures. As shown in Fig. 2(a), IEF reuses
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Fig. 1. Top: PyMAF improves the mesh-image alignment of the esti-
mated mesh. Bottom: PyMAF-X produces well-aligned full-body meshes
with natural wrist poses.
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Fig. 2. (a) The commonly-used iterative error feedback. (b) The pro-
posed mesh alignment feedback. (c) Mesh-aligned evidence extracted
from a feature pyramid.

have been made to leverage pixel-wise representation such
as part segmentation [25] or dense correspondences [29],
[30] in their regression networks. Though pixel-level evi-
dence is considered, it is still challenging for those methods
to learn structural priors and get hold of spatial details
simultaneously based merely on high-resolution contexts.

Motivated by the above observation, we design a Pyra-
midal Mesh Alignment Feedback (PyMAF) loop in our
regression network to exploit multi-scale and position-
sensitive contexts for better mesh-image alignment. The cen-
tral idea of our approach is to correct parametric deviation
explicitly and progressively based on the alignment status.
In PyMAF, mesh-aligned evidence will be extracted from
the spatial features according to the 2D projection of the
estimated mesh and then fed back to the regressors for pa-
rameter updates. As illustrated in Fig. 2, the mesh alignment
feedback loop takes advantage of more informative features
for parameter correction compared with the commonly used
iterative error feedback loop [1], [31]. In order to leverage
multi-scale contexts, mesh-aligned evidence is extracted
from a feature pyramid so that the coarse-aligned meshes
can be corrected with large step sizes based on the lower-
resolution features. To enhance these mesh-aligned features,
an auxiliary task is imposed on the highest-resolution fea-
ture to infer pixel-wise dense correspondence, guiding the
image encoder to preserve the most related information in
the spatial feature maps. Meanwhile, a spatial alignment
attention mechanism is introduced to fuse the grid and
mesh-aligned features so that the regressor could be aware
of the whole image contexts.

Since the SMPL family includes the hand [32] and
face [33] models, PYMAF can be easily modified to re-
construct the hand and face meshes. We leverage three
part-specific PYMAF networks as part experts to predict
body, hand, and face parameters, and propose PyMAF-X
for expressive full-body mesh recovery. Benefiting from the
well-aligned results of each PyMAF-based expert, PyYMAF-
X can produce plausible full-body mesh results in com-
mon scenarios even using the most naive integration strat-
egy [16]. However, as shown in Fig. 1, the naive “Copy-
Paste” integration may lead to unnatural wrist poses under
challenging cases. To address this issue, we propose an
adaptive integration strategy to adjust the twist rotation of
the elbow poses so that the elbow and wrist poses could be
more compatible. In this way, the updated twist rotation
of the elbow joint serves as compensation for the wrist
joint and helps to produce natural wrist poses in the full-
body model. Moreover, since the twist component [34] of
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the elbow poses is the rotation around the elbow-to-wrist

bone, it barely changes the position of the body and hand

joints, which is the key to maintaining the well-aligned
performances of body and hand experts. Different from
existing full-body solutions [15], [16], [17], [18], our method
do not rely on additional networks to infer the wrist poses,
and hence bypass the learning issue raised by insufficient
full-body mesh annotations.

The contributions of this work can be summarized as
follows:

e A mesh alignment feedback loop is proposed for
regression-based human mesh recovery, where mesh-
aligned evidence is exploited to correct parametric errors
explicitly so that the estimated meshes can be better
aligned with the input images.

e A feature pyramid is incorporated with the mesh align-
ment feedback loop so that the regression network can
leverage multi-scale contexts. This yields the Pyramidal
Mesh Alignment Feedback (PyMAF) loop, a novel archi-
tecture for human mesh recovery.

o An auxiliary pixel-wise supervision and spacial alignment
attention are introduced in PyMAF to enhance the mesh-
aligned features such that they can be more informative,
relevant, and aware of the whole image contexts.

o PyMAF is further extended as PyYMAF-X for full-body
mesh recovery, where an adaptive integration strategy
with the elbow-twist compensation is proposed to avoid
unnatural wrist poses while maintaining the alignment of
the body and hand estimations.

An early version of this work has been published as

a conference paper [6]. We have made significant exten-
sions to our previous work [6] from three aspects. First,
PyMAF is improved to be more accurate with the newly
introduced spatial alignment attention, which effectively en-
hances the feature learning and further improves the mesh-
image alignment. Second, PYMAF goes beyond body mesh
recovery and is extended to reconstruct hand and full-body
models from monocular images. The well-aligned perfor-
mance of the body- and hand-specific PyYMAF makes it more
promising to produce well-aligned full-body meshes. Third,
an adaptive integration strategy is proposed to assemble
predictions from body and hand experts. Such a strategy
effectively addresses the unnatural wrist issues while main-
taining the part-specific alignment. Based on these updates,
our final method PyMAF-X achieves new state-of-the-art
results both qualitatively and quantitatively, contributing
novel solutions towards the well-aligned and natural recov-
ery of full-body models from monocular images.

2 RELATED WORK
2.1 Monocular Human Mesh Recovery

Monocular recovery of human meshes has been actively
studied in recent years. Aiming at the same goal of
producing well-aligned and natural results, two different
paradigms for human mesh recovery have been investigated
in the research community. In this subsection, we give a brief
review of these two paradigms and refer readers to [35] for
a more comprehensive survey.

Optimization-based Approaches. Pioneering work in
this field mainly focus on the optimization process of fitting
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parametric models (e.g., SCAPE [36] and SMPL [20]) to
2D observations such as keypoints and silhouettes [22],
[37], [38]. In their objective functions, prior terms are de-
signed to penalize the unnatural shape and pose, while data
terms measure the fitting errors between the re-projection of
meshes and 2D evidence. Based on this paradigm, different
updates have been investigated to incorporate information
such as 2D /3D body joints [22], [39], silhouettes [23], [40],
part segmentation [41], dense correspondences [42] in the
fitting procedure. Despite the well-aligned results obtained
by these optimization-based methods, their fitting process
tends to be slow and sensitive to initialization. Recently,
Song et al. [43] exploit the learned gradient descent in
the fitting process. Though this solution leverages rich
2D pose datasets and alleviates many issues in traditional
optimization-based methods, it still relies on the accuracy
of 2D poses and breaks the end-to-end learning. Alterna-
tively, our solution supports end-to-end learning and is also
able to leverage rich 2D datasets thanks to the progress
(e.g., SPIN [3], EFT [44], and NeuralAnnot [45]) in the
generation of more precise pseudo 3D ground-truth for 2D
datasets [46], [47], [48].

Regression-based Approaches. Alternatively, taking ad-
vantage of the powerful nonlinear mapping capability of
neural networks, recent regression-based approaches [1], [3],
[15], [19], [28], [49], [50], [51] have made significant advances
in predicting human models directly from monocular im-
ages. These deep regressors take 2D evidence as input and
learn model priors implicitly in a data-driven manner under
different types of supervision signals [1], [52], [53], [54], [55],
[56], [57], [58] during the learning procedure. To mitigate
the learning difficulty of the regressor, different network
architectures have also been designed to leverage proxy rep-
resentations such as silhouette [19], [59], 2D /3D joints [4],
(18], [191, [42], [49], [50], [52], [60], [61], segmentation [26],
[62] and dense correspondences [29], [30]. Such strategies
can benefit from synthetic data [29], [63] and the progress
in the estimation of proxy representations [27], [64], [65],
[66], [67]. In these regressors, though supervision signals
are imposed on the re-projected models to penalize the
mismatched predictions during training, their architectures
can hardly perceive the misalignment during the inference
phase. In comparison, the proposed PyMAF is a close-loop
for both training and inference, which enables a feedback
loop in our regressor to leverage spatial evidence for better
mesh-image alignment of the estimated human models.

Directly regressing model parameters from images is
very challenging, even for neural networks. Existing meth-
ods have also offered non-parametric solutions to recon-
struct human body models. Among them, volumetric repre-
sentation [59], [68], mesh vertices [2], [51], [69], and position
maps [70], [71], [72], [73] have been adopted as regres-
sion targets. Using non-parametric representations as the
regression targets is more readily to leverage high-resolution
features but needs further processing to retrieve parametric
models from the outputs. Besides, the mesh surfaces of non-
parametric outputs tend to be rough and more sensitive
to occlusions without additional structure priors. In our
solution, the deep regressor uses spatial features at multiple
scales for both high-level and fine-grained perception. It
produces parametric models directly with no further pro-

cessing required.

Recently, there are also numerous efforts devoted to
achieving or handling multi-person recovery [61], [74], [75],
[ ]’ [ ]’ [ ]’ [ ]’ Video lnputs [ ]/ [ ]/ [ ]/ [ ]I [ ]/
[85], occlusions [5], [30], [66], [87], more accurate shape [63],
[88], [89], ambiguities [90], [91], camera estimation [92], [93],
imbalanced data [94], [95], pseudo ground-truth genera-
tion [3], [44], [45], and clothed human reconstruction [96],
[97], [98], [99]. Our work is complementary to them and
focuses on the design of regressor architectures for single-
image well-aligned body and full-body mesh recovery.

2.2 Full-body Mesh Recovery

Compared with the large number of solutions for the body-

only [1], [2], [3], [#], [30], hand-only [7], [?], [10], [100],

[101], [102], [103], [104], [105], [106], [107], and face-only [11],
[12], [13], [14], [108], [109] mesh recovery, the full-body

mesh recovery receives less attention due to its challenging
nature and the lack of annotated datasets. Similar to the
developments of body-only mesh recovery algorithms, the
research in the field of full-body mesh recovery begins with
the proposal of full-body models, including Frank [110],
Adam [110], SMPL-X [21], and GHUM [111], etc., and
their corresponding optimization-based methods [21], [39],
[110], [111], [112], [113]. Recently, several regression-based
methods [15], [16], [17], [18], [114] have been proposed to
overcome the slow and unnatural issues of optimization-
based methods.

Following the pioneering work ExPose [15], regression-
based methods [15], [16], [17], [18], [115], [116], [117] typ-
ically consist of three part-specific modules, namely part
experts, to predict parameters of body, hand, and face
from the corresponding part images cropped from original
inputs. They differ mainly in the architecture of the part
experts and the strategy to integrate part estimations. As
the part experts are basically chosen from the body- or
hand-only mesh recovery solutions, the integration strategy
to sew up independent estimations becomes an essential
aspect of a regression-based full-body method. The most
straightforward strategy to integrate the body and hand
estimations would be the “Copy-Paste” [15], [16]. To obtain
more natural integration results, learning-based strategies
are proposed in recent state-of-the-art methods [16], [17],
[115]. For instance, FrankMocap [16] learns to correct the
arm poses based on the distance between the wrist positions
predicted by body and hand experts. Zhou et al. [115]
incorporate body features in the learning of the hand expert
so that the predicted hand poses could be more compatible
with the arm. PIXIE [17] introduces a learnable moderator
to merge body and hand features for the regression of
wrist and finger poses. All the above solutions rely on
additional networks to predict or correct the wrist poses
with the condition of body information, which is typically
inferior to the original hand poses predicted by the hand
expert, resulting in degraded alignment on the hand parts.
Recently, Hand4Whole [18] proposes to learn wrist poses
based on the positions of selected hand joints but does
not consider the compatibility of arm poses. In contrast
to existing solutions, PYMAF-X resorts to the adjustment
of the twist components [34] of wrist and elbow poses,
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Fig. 3. lllustration of the proposed Pyramidal Mesh Alignment Feedback (PyMAF) for human mesh recovery. PyMAF leverages a feature pyramid
and enables an alignment feedback loop in our network. Given a coarse-aligned model prediction, mesh-aligned evidence is extracted from finer-
resolution features accordingly and fed back to a regressor for parameter rectification.

which produces natural wrist rotations while maintaining
the well-aligned performances of each part expert during
the integration. Besides, our motivation and method also
differ from the previous work [50], [118] that decomposes
the twist components in the inverse kinematics problem.
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Strategies for incorporating fitting processes along with
regression tasks have also been investigated in the literature.
For human mesh recovery, Kolotouros et al. [3] combine
an iterative fitting procedure with the training procedure
to generate more accurate ground truths for better super-
vision. Several attempts have been made to deform human
meshes so that they can be aligned with the intermediate
estimates such as depth maps [119], part segmentation [116],
and dense correspondences [42]. These approaches adopt
intermediate estimations as fitting objectives and hence rely
on their quality. In contrast, our approach uses the currently
estimated meshes to extract deep features for refinement,
enabling the fully end-to-end learning of the deep regressor.

In a broader view, remarkable efforts have been made to
involve iterative fitting strategies in other computer vision
tasks, including facial landmark localization [120], [121],
[122], human/hand pose estimation [31], [123], etc. For
generic objects, Pixel2Mesh [124] progressively deforms an
initial ellipsoid by leveraging perceptual features. Following
the spirit of these works, we exploit new strategies to extract
fine-grained evidence and contribute novel solutions in the
context of human mesh recovery.

Iterative Fitting in Regression Tasks

3 METHOD

In this section, we will elaborate technical details of our
approach. We first present PYMAF, a powerful model for
regression-based human mesh recovery, then extend it to
PyMAE-X for full-body mesh recovery.

3.1 PyMAF for Body-only Mesh Recovery

As illustrated in Fig. 3, PYMATF consists of a feature pyramid
for mesh recovery in a coarse-to-fine fashion. Coarse-aligned

predictions will be improved by utilizing the mesh-aligned
evidence extracted from spatial feature maps. In order to
enhance the mesh-aligned evidence, an auxiliary dense pre-
diction task is imposed on the image encoder while a spatial
alignment attention is applied to fuse the grid and mesh-
aligned features.

3.1.1 Feature Pyramid for Body Model Regression

Our image encoder aims to generate a pyramid of spatial
features from coarse to fine granularities, which provide
descriptions of the posed person at different scale levels.
The feature pyramid will be used in subsequent predictions
of the SMPL model with the pose, shape, and camera
parameters © = {0, 3, 7}.

Formally, the encoder takes an image I as i Put and
outputs a set of spatial features {¢! € RC*H:% at
the end, where H! and W/ are monotonically mcreasmg.
At level t, based on the feature map ¢, a set of sam-
pling points X* will be used to extract point-wise features.
Specifically, for each 2D point z in X*, point-wise features
ol(z) € R will be extracted from ¢! accordingly
using the bilinear sampling. These point-wise features will
go through a MLP (multi-layer perceptron) for dimension
reduction and be further concatenated together as a feature
vector ¢!, ie.,

b;, = F( = ({f (o

where F(-) denotes the feature sampling and processing
operations, @ denotes the concatenation, and f () is the
MLP. After that, a parameter regressor R, takes features
¢!, and the current estimation of parameters ©; as inputs
and outputs the parameter residual. Parameters are then
updated as ©,y; by adding the residual to ©,. For the
level t = 0, ©¢ adopts the mean parameters calculated from
training data.

Given the parameter predictions © (the subscript ¢ is
omitted for simplicity) at each level, a mesh with vertices of
M = M(0,3) € RV*3 can be generated accordingly, where
N = 6890 denotes the number of vertices in the SMPL
model. These mesh vertices are mapped to sparse 3D joints
J € RMi*3 by a pretrained linear regressor, and further

)).forzin X*}), (1)
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projected on the image coordinate system as 2D keypoints
K = II(J) € RYi*2, where II() denotes the projection
function based on the camera parameters 7. Note that the
pose parameters in © are represented as relative rotations
along kinematic chains, and minor parameter errors can
lead to noticeable misalignment between the 2D projection
and image evidence. To penalize such misalignment during
the training of the regression network, we follow common
practices [1], [3] to add 2D supervisions on the 2D keypoints
projected from the estimated mesh. Meanwhile, additional
3D supervisions on 3D joints and model parameters are
added when ground truth 3D labels are available. Overall,
the loss function for the parameter regressor is written as

Lreg = Aoal K = K|+ A3allJ = J|| + Aparal|© = Ol, )

where || - || is the squared L2 norm, K, .J, and © denote the
ground truth 2D keypoints, 3D joints, and model parame-
ters, respectively.

One of the improvements over the commonly used pa-
rameter regressors is that our regressors can better leverage
spatial information. Unlike the commonly used regressors
taking the global features ¢, € R%*! as input, our regres-
sor uses the point-wise information obtained from spatial
features ¢.. A straightforward strategy to extract point-
wise features would be using grid-pattern points Xg.iq
and uniformly sampling features from ¢?. In the proposed
approach, the sampling points X* adopt the grid pattern at
the level ¢ = 0 and will be updated according to the current
estimates when ¢ > 0. We will show that such a mesh
conditioned sampling strategy helps the regressor produce
well-aligned reconstruction results.

3.1.2 Mesh Alignment Feedback Loop

As mentioned in HMR [1], directly regressing mesh param-
eters in one go is challenging. To tackle this issue, HMR
uses an Iterative Error Feedback (IEF) loop to iteratively
update © by taking the global features ¢, and the current
estimation of © as input. Though the IEF strategy reduces
parameter errors progressively, it uses the same global
features each time for parameter update, which lacks fine-
grained information and is not adaptive to new predictions.
By contrast, we propose a Mesh Alignment Feedback (MAF)
loop so that mesh-aligned evidence can be leveraged in
our regressor to rectify current parameters and improve the
mesh-image alignment of the estimated model.

Mesh-aligned Features. In the proposed mesh alignment
feedback loop, we extract mesh-aligned features from ¢’
based on the currently estimated mesh M; when ¢t > 0
to obtain more fine-grained and position-sensitive evi-
dence. Compared with the global features or the uniformly
sampled grid features, mesh-aligned features can reflect
the mesh-image alignment status of the current estima-
tion, which is more informative for parameter rectification.
Specifically, the sampling points X' are set as the mesh-
aligned points X/, __,, which are obtained by first down-
sampling the mesh M; to M; and then projecting it on the
2D image plane, ie., X' = X! = II(M;). Based on
X! .<n, the mesh-aligned features ¢!, will be extracted from
¢% using Eq. 1, i.e.,

Pl = @), = F($L,TI(My)). ®)

with AS w/o AS Image

Dens. Corre.

Fig. 4. Visualization of the spatial feature maps and predicted dense cor-
respondences. Top: Input images. Second / Third Row: Spatial feature
maps learned without/with Auxiliary Supervision (AS). Bottom: Predicted
dense correspondence maps under auxiliary supervision.

Spatial Alignment Attention. Though the mesh-aligned
features ¢!, are position-sensitive, these features are con-
fined to the re-projection regions of the current mesh result.
To enable the perception of the relative positions in the
whole image context, we further design spatial alignment
attention to fuse the information from both grid and mesh-
aligned features. Considering that both these two features
are extracted from the same spatial feature map, we adopt
a self-attention module to process them. Specifically, the
point-wise features extracted based on the grid-pattern
points X ;4 and the mesh-aligned points X! ., are first
concatenated together as ¢},,,:

Ezm = {¢Z(x)’ for z in {Xgrid UX'fnesh}} € RNngCS’

)
where Ny, is the total number of the grid-pattern and
mesh-aligned points. Then, spatial alignment attention is
applied to learn attentive relations among ¢}, so that the
mesh-aligned features can be more effectively enhanced
with the spatial information in the grid features. In our so-
lution, a self-attention module [125] is employed to process
the features ¢},,,:

Q. K,V =¢, W, WK WY

Bl = Att(Q, K)V ©

gm ’ )
where W, WX and WV are the learnable matrices
used to generate different subspace representations of the
query, key, and value features Q, K, V, respectively, Att(-)
denotes the scaled dot-product attention function [125] with
softmax. In this way, the messages of the grid and mesh-
aligned features can be fully fused together since the self-
attention mechanism captures the relationships between all

elements of the features ¢f]m. After that, the enhanced
mesh-aligned features ¢!, are obtained by reducing the
dimension of ¢!, and concatenating thAem together. Finally,
the enhanced mesh-aligned features ¢!, are fed into the

regressor R; for parameter update:

O =6, + Ry (@t, ¢3§n) fort > 0. ©6)
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3.1.3 Auxiliary Dense Supervision

As depicted in the second row of Fig. 4, spatial features tend
to be affected by noisy inputs, since raw images may contain
a large amount of unrelated information such as occlusions,
appearance, and illumination variations. To improve the
reliability of the mesh-aligned cues extracted from spatial
features, we impose an auxiliary pixel-wise prediction task
on the spatial features at the last level. Specifically, during
training, the spatial feature maps ¢! will go through a
convolutional layer to generate dense correspondence maps
with pixel-wise supervision. Dense correspondences encode
the mapping relationship between foreground pixels on
the 2D image plane and mesh vertices in 3D space. In
this way, the auxiliary supervision provides mesh-image
correspondence guidance for the image encoder to preserve
the most related information in the spatial feature maps.

In our implementation, we adopt the IUV maps defined
in DensePose [66] as the dense correspondence represen-
tation, which consists of the part index and UV values
of the mesh vertices. Note that we do not use DensePose
annotations in the dataset but render IUV maps based
on the ground-truth SMPL models [30]. During training,
classification and regression losses are applied on the part
index P and UV channels of dense correspondence maps,
respectively. Specifically, for the part index P channels, a
cross-entropy loss is applied to classify a pixel belonging
to either background or one among body parts. For the
UV channels, a smooth L1 loss is applied to regress the
corresponding UV values of the foreground pixels. Only
the foreground regions are taken into account in the UV
regression loss, i.e., the estimated UV channels are firstly
masked by the ground-truth part index channels before
applying the regression loss. Overall, the loss function for
the auxiliary pixel-wise supervision is written as

Louz =ApiCrossEntropy(P, ]5)
+AuwSmoothL1(P & U, P ® U) @)
+AuwSmoothLI(P ©V,P o V),

where © denotes the mask operation. Note that the auxiliary
prediction is required in the training phase only.

Fig. 4 visualizes the spatial features of the encoder
trained with and without auxiliary supervision, where the

feature maps are simply added along the channel dimension
as grayscale images and visualized with colormap. We can
see that the spatial features are more neat and robust to
input variations after applying auxiliary supervision. Note
that the dense correspondence is not limited to the IUV
representation, the Projected Normalized Coordinate Code
(PNCCQ) [126] can be also adopted as dense correspondences
when IUV is not defined in the mesh model. More dis-
cussions about the choice of dense correspondences can be
found in the Supplementary Material.

3.2 PyMAF-X for Full-body Mesh Recovery

The body-specific PYMAF can be easily modified to re-
construct hand and face meshes by simply changing the
SMPL model in the above formulation to the MANO [32]
and FLAME [33] models. Based on the regression power
of PYMAF, we extend it to PYMAF-X for full-body mesh
recovery.

Following previous works [15], [16], [17], [18], PyYMAF-
X consists of three experts, i.e., three part-specific PyMAFs,
to predict the parameters of body, hand, and face, as illus-
trated in Fig. 5. To ensure high-resolution observations of
part regions, part experts perform individual predictions
on the body, hand, and face images cropped from the
original inputs. At each iteration of the mesh alignment
feedback loop, the predictions of the body-, hand-, and
face-specific PYMAF are collected and integrated as the
parameters O, = {0y, B, ¥, 7} of the full-body model
SMPL-X [21], where 8¢, By, and 9 denotes the pose,
shape, and facial expression parameters, respectively. The
pose parameters 8, consist of the rotational poses of 55
joints in total, including 22 joints for the body, 30 finger
joints for the hands, and 3 jaw joints for the face. The camera
parameters 7 are taken from the predictions of the body-
specific PYMAF and used to project body, hand, and face
vertices on the image plane. Moreover, considering that the
positions of hand and face are susceptible to inaccurate body
pose estimations, we align the center of their re-projected
points to the image center of hand and face to ensure their
mesh-aligned features are meaningful.

Naive Integration. After individual regression of each
part, we need to figure out the rotation of wrist joints to inte-
grate the body and hand meshes. The most straightforward
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Naive Integration

Copy-Paste
Prediction of
the Body Expert
Prediction of
the Hand Expert Unnatural
Hbow Wrist Pose X
£
Vtw
Wrist g
twist
rotation 6 .,
| ¥ / +
Elbow-Twist Copy-Paste
Compensation Natural
Wrist Pose v/

Adaptive Integration

Fig. 6. lllustration of the naive integration and the proposed adaptive
integration with elbow-twist compensation.

strategy would be the naive “Copy-Paste” integration [16].
Specifically, the poses of the wrist joints are calculated based
on the body poses predicted by the body expert and the
global orientation of hands predicted by the hand expert.
Let éhand be the global orientation of the left or right hand,
which is also the global rotation of the wrist joint. The wrist
pose of the full-body model can be solved by first computing
the global rotation éelbow of the elbow joint and then the
relative rotation 6,,,;; of the wrist joint, i.e.,

éelbow = H 0]';
jEA(elbow) (8)

14
Ow’r'ist = Ohandeelbow 5

where 0; denotes the relative rotation of the j-th body joint,
A(elbow) the ordered set of joint ancestors of the elbow joint
and itself in the kinematic tree, and 0,;1” 4 the inverse global
rotation of the hand. Benefiting from the well-aligned results
of each part, PYMAF-X can produce plausible results in
common scenarios using such a simple integration strategy.

Adaptive Integration with Elbow-Twist Compensation.
As pointed out in previous work [15], the body expert
hardly perceives the hand poses due to the small proportion
of hand region in the body images. It may lead to incom-
patible configurations of the arm and hand poses predicted
individually by the body and hand experts, resulting in
unnatural wrist poses of the full-body model, as illustrated
in Fig. 6. Previous work [15], [16], [17], [18] alleviates this
issue by learning wrist poses from the body and hand
features but typically degrades the accuracy of the wrist
poses and alignment. In our work, we propose an adaptive
integration strategy to correct the elbow poses directly based
on the solved wrist poses such that the elbow and wrist
poses could be more compatible. To maintain the mesh-
image alignment, we only correct the twist rotation of the
elbow joints as it is the rotation along the elbow-wrist bone
and barely affects the position of the body and hand joints.
To this end, we first compute the twist angle of the wrist
poses w.r.t. the elbow-to-wrist bone, then update the elbow
and wrist poses by adding and subtracting the compensated
twist rotation, respectively.

7

Step 1: Computing the original twist angle. The twist
component around the elbow-to-wrist vector can be decom-
posed from the wrist poses. Without loss of generality, let
the quaternion representation of the left or right wrist pose
solved in Eq. (8) be Qurist = (Wuwrist, Uwrist). By using
Huyghe’s method [127], [128], the quaternion g, of the
twist rotation around the normalized elbow-to-wrist vector
Uty can be calculated as:

- —
Vwrist * Vtw

R
qproj = (wwristauprojﬁtw)v (9)
Qo = —Torod
[ @pro|

where UpyojUpw IN Qproj is the projection vector of the
normalized Uy,,;5¢ ONto Uy,,. Let wy,, be the first element of
the twist quaternion gy, then the twist rotation angle can
be computed as o, = 2c0s™H(wyy) € [—, 7).

Step 2: Updating elbow and wrist poses. The angle o,
reflects the intensity of the wrist rotation around the elbow-
to-wrist bone, and an out-of-range twist angle typically
leads to unnatural wrist poses. To tackle this issue, an
additional twist rotation is added to the elbow pose and
serves as an compensation to the wrist pose. Specifically,
the elbow/wrist poses are updated as Ocipow/Owrist DY
adding/subtracting a twist rotation 8., around the elbow-
to-wrist vector Vi with~a compensation angle of oy, ie.,
Ocivow = Ocivowbcp and Oyyrist = 06_1)1911,”5,5. In our solution,
we empirically set a range [@tmin, Qtmaz] tO constraint oy,
and adopt the compensation angle ., as:

_ Aty — Atmax if Qtw > Otmaz)
Qep =

(10)

min(atw — Qgmin, O), otherwise.

As shown in our experiments, with the twist compen-
sation from the elbow joint, the wrist pose becomes more
natural while maintaining the mesh-image alignment of
the body and hands. In practice, the adaptive integration
is not applied for those invisible hands since the global
orientation predicted by the hand expert is not reliable when
the hand is invisible. In our implementation, the hand expert
of PyMAF-X also predicts the confidence of the visibility
status of hands. When the hand is invisible, the full-body
model simply adopts the wrist poses predicted by the body
expert and the mean poses of hands.

4 EXPERIMENTS
4.1 Implementation Details

The part-specific PYMAF primarily adopts ResNet-50 [129]
as the backbone of the image encoder. We also follow
ExPose [15] and PIXIE [17] to adopt HRNet-W48 [27] as the
encoder backbone for the body model regression. For each
part-specific PyYMAF, the image encoder takes a 224 x 224
image as input and produces spatial feature maps with
resolutions of {14 x 14,28 x 28,56 x 56}. When generating
mesh-aligned features, the vertex number of body, hand,
and face meshes is down-sampled to 431, 195, and 708, re-
spectively. The mesh-aligned features extracted from feature
maps of each point will be processed by MLPs so that their
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channel dimensions will be reduced to 5. Hence, the mesh-
aligned feature vector for the body model has a length of
2155 = 431 x 5, which is similar to the length of the global
features used in HMR [1]. The maximum number 7' is set to
3, which is equal to the iteration number used in HMR. For
the grid features used at ¢ = 0, they are uniformly sampled
from ¢2 with a 21 x 21 grid pattern, i.e., the point number is
441 = 21 x 21 which is approximate to the vertices number
431 after mesh downsampling. The regressors R; have the
same architecture as the one in HMR, except that they
have slightly different input dimensions. The twist angle
constraint [Q¢min, Qtmaz) is empirically set to [—72°,72°]
in our implementation. Following previous work [3], [5],
we adopt the continuous 6D representation [130] for pose
parameters in the regressor. Following PARE [5], the body
encoder is initialized with the model pretrained on 2D pose
datasets [46], [48]. During training, we use the Adam [131]
optimizer and set the learning rate to 5e—5 without decay.
The part-specific PyMAFs are first pre-trained individually
and then assembled together for finetuning on full-body
datasets. Similar to PARE [5], we also observed a slight
performance gain when removing the auxiliary supervision
at the final stage of training, but we do not apply such
a strategy in our experiments for more consistent ablation
studies of our newly introduced components. More details
of the implementation can be found in our code and the
Supplementary Material.

Camera Setting. We follow previous work [3] to use a
weak perspective camera with a pre-defined focal length of
5,000 by default for training and evaluation. When running
experiments on AGORA [132], we use a perspective camera
with the focal lengths estimated by SPEC [93] as there are
stronger perspective distortions in this dataset. Incorporat-
ing the camera setting of SPEC [93] with our method for
more accurate mesh recovery is left for future work.

Runtime. The PyTorch implementation of the body-only
PyMAF takes about 22 ms to process one sample on the
machine with an NVIDIA RTX 3090 GPU. For full-body
mesh recovery, PYMAF-X takes about 80 ms to process
one sample, which is on par with existing regression-based
approaches [15], [17], [18]. In our current implementation,
the part-specific backbone networks run in sequence to
process the body, hand, and face images. Running them in
parallel would further reduce the runtime.

4.2 Datasets

Following the practices of previous work [1], [3], [5], the
body expert is trained on a mixture of data from sev-
eral datasets with 3D and 2D annotations, including Hu-
man3.6M [134], MPI-INF-3DHP [139], MPII [46], LSP [47],
LSP-Extended [140], and COCO [48]. For the hand expert,
we use images from FreiHAND [8], InterHand2.6M [9] and
COCO-Wholebody [141] for training. For the face expert, we
use the images from VGGFace2 [142] for training. Detailed
descriptions of the datasets can be found in the Supplemen-
tary Material.

Pseudo Ground-truth. Following previous work [5],
the SMPL/SMPL-X models fitted in EFT [44] and ExPose
[15] are used as pseudo ground-truth annotations for the
training of body and full-body model regressors. For the

8
Table 1
Reconstruction errors on 3DPW [133] and Human3.6M [134].
Backbone architectures are highlighted in the brackets.
3DPW Human3.6M
Method PVE MPJPE PA-MPJPE MPJPE PA-MPJPE
Kanazawa et al. [135] 139.3 116.5 72.6 - 56.9
_ Doersch et al. [55] - - 74.7 - -
E Arnab et al. [136] - - 72.2 77.8 54.3
8.DSD [137] - - 69.5 59.1 424
E VIBE [80] 1134 93.5 56.5 65.9 41.5
& MEVA [13¢] - 869 54.7 - -
TCMR [81] 111.5 95.0 55.8 62.3 41.1
Pavlakos et al. [19] - - - - 75.9
NBF [28] - - - - 59.9
o8 o Zanfir et al. [56] - 90.0 57.1 - -
& I2L-MeshNet [4] - 93.2 58.6 55.7 41.1
ﬁ Pose2Mesh [49] - 88.9 58.3 64.9 46.3
. LearnedGD [43] - 55.9 - 56.4
Z HUND [116] - 814 57.5 69.5 52.6
S HybrIK [50] 945 80.0 48.8 54.4 34.5
Pose2Pose [18] - 86.6 54.4 - -
3DCrowdNet [61] 983 81.7 51.5 - -
HMR (Res50) [1] - 1300 76.7 88.0 56.8
GraphCMR (Res50) [2] - - 70.2 - 50.1
SPIN (Res50) [3] 1164 96.9 59.2 62.5 411
HMR-EFT (Res50) [44] - - 54.3 - 46.0
Graphormer (HR64) [69] - - - 51.2 34.5
ROMP (Res50) [77] 105.6 89.3 53.5 - -
PARE (Res50) [5] 99.7 82.9 52.3 - -
PARE (HR32) [5] 97.9 820 50.9 - -
W'Ezis’ehhé’(R’e’sSO) ”””” 998 844 "7 51.3° 717636 - 447 "
o)) PyMAF (Res50) 944 79.7 49.0 58.1 40.2
%o Baseline (HR48) 933 795 48.0 58.8 39.5
% PyMAF (HR48) 91.3 78.0 47.1 54.2 37.2
* with training on 3DPW
* HMR-EFT (Res50) [44] - - 51.6 - -
* ROMP (Res50) [77] 947 79.7 497 - -
* Graphormer (HR64) [69]] 87.7 74.7 45.6 - -
* PARE (HR32) [5] 88.6 745 465 - -
FPyMAF (Res50) "~~~ 77 887 768 468 " -0 -
* PyMAF (HR48) 87.0 74.2 45.3 - -

training of the face expert, we use DECA [14] and a face
alignment algorithm FAN [143] to generate pseudo ground-
truth FLAME models and facial landmarks on the training
set of VGGFace2 [142].

Dense Correspondence. Note that we do not use the
DensePose annotations in COCO for auxiliary supervision
but render dense correspondence maps based on the pseudo
ground-truth meshes using the method described in [30].

4.3 Evaluation Metrics

We report the results of our approach in various evaluation
metrics for quantitative comparisons with existing state-of-
the-art methods, where all metrics are computed in the same
way as previous work [1], [3], [5], [15], [17], [18] in literature.

To quantitatively evaluate the performance of the 3D
pose estimation, PVE, MPJPE, PA-PVE, and PA-MPJPE are
adopted as the primary evaluation metrics. They are all
reported in millimeters (mm) by default. Among these
metrics, PVE denotes the mean Per-vertex Error, defined
as the average point-to-point Euclidean distance between
the predicted and ground truth mesh vertices, while MPJPE
denotes the Mean Per Joint Position Error. PA-PVE and PA-
MPJPE denote the PVE and MPJPE after rigid alignment
of the prediction with the ground truth using Procrustes
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Analysis. Note that the metrics PA-PVE and PA-MPJPE are
not aware of the global rotation and scale errors since they
are calculated after rigid alignment.

4.4 Comparison with the State of the Art
4.4.1 Evaluation on Body-only Mesh Recovery

3D Human Pose and Shape Estimation. We first evaluate
our approach on the 3D human pose and shape estima-
tion task and make comparisons with previous state-of-
the-art regression-based methods. We present evaluation
results for quantitative comparison on 3DPW [133] and
Human3.6M [134] datasets in Table 1. Our PyMAF achieves
competitive or superior results among previous approaches,
including frame-based and temporal approaches. Note that
the approaches reported in Table 1 are not strictly compa-
rable since they may use different training data, pseudo
ground-truths, learning rate schedules, training epochs, etc.
For a fair comparison, we report our baseline results in
Table 1, which is trained under the same setting as PyMAF.
The baseline approach has the same network architecture
with HMR [1] and also adopts the 6D rotation representa-
tion [130] for pose parameters. Under the setting of using
ResNet-50 backbone and without training on 3DPW, Py-
MAF reduces the MPJPE over the baseline by 4.7 mm and
5.5 mm on 3DPW and Human3.6M datasets, respectively.

From Table 1, we can see that PYMAF has more notable
improvements on the metrics MPJPE and PVE. We would
argue that the metric PA-MPJPE can not reveal the mesh-
image alignment performance since it is calculated as the
MPJPE after rigid alignment. As depicted in the Supple-
mentary Material, a reconstruction result with a smaller PA-
MPJPE value can have a larger MPJPE and worse alignment
between the reprojected mesh and the input image.

2D Human Pose Estimation. We evaluate 2D human
pose estimation performance on the COCO validation set to
measure the mesh-image alignment quantitatively in real-
world scenarios. During the evaluation, we project key-
points from the estimated mesh on the image plane and
compute the Average Precision (AP) based on the key-
point similarity with the ground truth 2D keypoints. The
results of keypoint localization APs are reported in Table 2.
OpenPose [65], a widely-used 2D human pose estimation
algorithm, is also included for reference. We can see that the
COCO dataset is very challenging for approaches to human
mesh recovery as they typically have much worse perfor-
mances in terms of the 2D keypoint localization accuracy. In
Table 2, we also include the results of the optimization-based
SMPLIify [22] by fitting the SMPL model to the ground-
truth 2D keypoints with 1,500 optimization iterations. As
pointed out in previous work [3], SMPLify may produce
well-aligned but unnatural results. Moreover, SMPLify is
much more time-consuming than regression-based solu-
tions. Among approaches to recovering 3D human mesh,
PyMAF outperforms previous regression-based methods by
remarkable margins, making it the most competitive mesh
recovery method in comparison with OpenPose [65]. Under
the backbone of ResNet-50, PyMAF brings significant im-
provements over our baseline by 8.5% and 6.2% on AP and
APs5q, respectively. Qualitative comparisons can be found in
the supplementary material.

Table 2
Keypoint localization APs on the COCO [48] validation set. Results of
SMPLify [22] are evaluated based on the implementation in SPIN [3].
Results of HMR [1], GraphCMR [2], and SPIN [3] are evaluated based
on their publicly released code and models.

Method AP APs50 APrs APy APy,
OpenPose [65] 65.3 85.2 71.3 62.2 70.7
SMPLify [22] 290 475 300 356 243
HMR [1] 18.9 475 11.7 21.5 17.0
CMR [2] 9.3 26.9 4.2 11.3 8.1
SPIN [3] 173 39.1 13.5 19.0 16.6
DaNet [30] 33.8 68.6 29.9 36.0 323
Baseline (Res50) | 33.7 65.8 31.5 36.3 31.9
PyMAF (Res50) 422 72.0 44.6 444 41.0
Baseline (HR48) | 44.9 74.8 48.4 48.1 42.8
PyMAF (HR48) 47.7 76.7 52.5 50.5 46.1

PyMAF DECA [14] Image

Fig. 7. Qualitative comparison of face reconstruction results on in-
the-wild images. The results of both DECA [14] and PyMAF are the
parametric FLAME [33] models.

4.4.2 Evaluation on Hand-only Reconstruction

We compare the hand-only PyMAF with state-of-the-art
approaches on the FreiHAND [8] dataset. As shown in
Table 3, PYMAF outperforms the baseline and previous full-
body methods and is comparable with recent hand-only
methods [4], [51]. It is also worth noting that full-body
methods typically adopt the parametric representation of
the hand mesh, which tends to be numerically inferior to
the non-parametric representation used in recent hand-only
methods [4], [51], as pointed out in previous works [4], [35].

4.4.3 Evaluation on Face-only Reconstruction

Following previous work [15], [17], we compare the face-
only PyMAF with state-of-the-art face reconstruction ap-
proaches on the test set of Stirling3D [144] and NoW [13]
datasets. Table 4 reports the performances of different meth-
ods in Point-to-Surface after Procrustes Alignment (PA-P2S).
It shows that the PyYMAF outperforms the face expert of
previous full-body methods ExPose [15] and PIXIE [17],
while achieving similar results compared with the strong
face-only method DECA [14]. Qualitative comparisons of
face reconstruction results are visualized in Fig. 7. For more
consistent comparisons, we only show the intermediate
parametric FLAME model predicted by DECA [14] without
using detail displacements. We can see that PYMAF is able to
capture expressive face shapes and has competitive results
against DECA [14].

4.4.4 Evaluation on Full-body Mesh Recovery

Following previous work [15], [16], [17], [18] on full-
body mesh recovery, we evaluate the performance of
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Image

PyMAF-X

1

PIXIE [17] Hand4Whole [

p[16]

1 FrankMoca

Table 3
Hand reconstruction errors on the FreiHAND [8] dataset. T denotes the
methods using extra training data more than FreiHAND.

ig. 8. Qualitative comparison of full-body model reconstruction results on the COCO |

F-Scores 1 @

Method 5mm / 10 mm

PA-PVE | PA-MPJPE |

* Hand-only methods

FreiHAND [8] 10.7 - 0.529 / 0.935
Pose2Mesh [49] 7.8 7.7 0.674 / 0.969
I2L-MeshNet [4] 7.6 7.4 0.681 / 0.973
METRO [51] 6.7 6.8 0.717 / 0.981
* Full-body methods

ExPose [15] 11.8 12.2 0.484 / 0.918
Zhou et al. [115] - 15.7 -/-
FrankMocap [16] 11.6 9.2 0.553 / 0.951
PIXIE [17] 12.1 12.0 0.468 / 0.919
Hand4Whole [18] T 7.7 7.7 0.664 / 0.971

"Baseline T 86 89T 0.6057/7 0963 "

PyMAF 8.1 8.4 0.638 / 0.969
PyMAF t 7.5 7.7 0.671 / 0.974

PyMAEF-X on two benchmark datasets, i.e., EHF [
AGORA [132].

Table 5 reports the results of different methods for
full-body mesh recovery, including the optimization-based
MTC [112] and SMPLify-X [21], and the regression-based
ExPose [15], FrankMocap [16], Zhou et al. [115], PIXIE [17],
and Hand4Whole [18]. We can see that PyMAF-X achieves
the best results among existing solutions on most metrics,
especially on the evaluation of the body and full-body
reconstruction.

Table 6 compares the results of PyYMAF-X and other full-
body methods on the test set of AGORA [132], where all
the evaluation results are taken from the official evaluation
platform. Recent state-of-the-art approaches to body-only
mesh recovery are also included in Table 6 for comprehen-
sive comparisons. Note that the evaluation on AGORA is

] and

10

] validation set.

Table 4

Face reconstruction errors on Stirling3D [144] and NoW [13] datasets.

PA-P2S (mm) |

Method

Median Mean Std

* Stirling3D LQ/HQ

RingNet [13] 1.63/1.58 2.08/2.02 1.79/1.69

ExPose [15] 1.76/191 227/242 1.97/2.03
""Baseline ~ 1.55/1.57 "~ 2.02/2.04 177/178

PyMAF 1.51/1.48 1.97/1.92 1.72/1.67

* NoW

RingNet [13] 121 1.54 1.31

DECA [14] 1.09 1.38 1.18

ExPose [15] 1.26 1.57 1.32

PIXIE [17] 1.18 1.49 1.25
"Baseline 117 147 123

PyMAF 1.13 1.42 1.20

also affected by the detection results as the predictions are
first matched with the ground truth and then used to cal-
culate the reconstruction error. We use an off-the-shelf tool
OpenPifPaf [145] to detect persons and the corresponding
hands and face regions, of which the person detection result
is slightly worse than the recent solutions Hand4Whole [18]
and BEV [78]. For matched predictions, PYMAE-X outper-
forms other methods, especially in the metrics for hand and
full-body reconstruction on this challenging dataset.

Qualitative comparisons of different full-body methods
on real-world images are shown in Fig. 8, where we can
see that PYMAF-X produces more accurate body, hand, and
wrist poses than recent state-of-the-art approaches, includ-
ing FrankMocap [16], PIXIE [17], and Hand4Whole [18]. The
video results of PyMAF-X and other full-body methods can
be found on our project page and supplementary materials.
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Table 5
Reconstruction errors on the EHF [21] test set. T denotes the optimization-based approaches.
PVE PA-PVE PA-MPJPE
Method Full-body Hands Face | Full-body Body Hands Face | Body Hands

MTC [112] T - - - 67.2 - - - 107.8 16.7
SMPLify-X [21] T - - - 65.3 754 12.3 6.3 87.6 12.9
ExPose [15] 77.1 51.6 35.0 54.5 52.6 12.8 5.8 62.8 13.1
FrankMocap [16] 107.6 42.8 - 57.5 52.7 12.6 - 62.3 129
Zhou et al. [115] 90.8 51.7 28.1 66.2 60.3 14.6 7.0 70.9 14.3
PIXIE [17] 89.2 42.8 327 55.0 53.0 11.1 4.6 61.5 11.6
Hand4Whole [18] 76.8 39.8 26.1 50.3 - 10.8 5.8 60.4 10.8
PyMAF-X (Res50) 68.0 29.8 20.5 47.3 459 10.1 5.6 529 10.3
PyMAF-X (HR48) 64.9 29.7 19.7 50.2 44.8 10.2 5.5 52.8 10.3

Table 6

Reconstruction errors on the AGORA test set. T denotes the methods that are fine-tuned on the AGORA training set or similarly synthetic

data [93]. All results are taken from the official evaluation platform'.
Detection MVE | MPJPE |
Method Body

Model  F1 Score 1 Full-Body Body Face L/R-Hand Full-Body Body Face L/R-Hand
SPIN [3] SMPL 0.77 - 148.9 - - - 153.4 - -
PARE [5] t SMPL 0.84 - 140.9 - - - 146.2 - -
SPEC [93] T SMPL 0.84 - 106.5 - - - 112.3 - -
ROMP [77] 1 SMPL 0.91 - 103.4 - - - 108.1 - -
BEV [78] T SMPL 0.93 - 100.7 - - - 105.3 - -
SMPLify-X [21] SMPL-X 0.71 236.5 187.0 489  483/514 231.8 1821 529  46.5/49.6
ExPose [15] SMPL-X 0.82 217.3 151.5 511  749/71.3 215.9 1504 552  72.5/68.8
FrankMocap [16] SMPL-X 0.80 - 168.3 - 54.7/55.7 - 165.2 - 52.3/53.1
PIXIE [17] SMPL-X 0.82 191.8 1422 502  49.5/49.0 189.3 140.3 545  46.4/46.0
Hand4Whole [18] T SMPL-X 0.94 135.5 90.2 41.6 46.3/48.1 132.6 87.1 46.1 44.3/46.2
PyMAF-X (Res50) T | SMPL-X 0.89 134.4 904 387 459/473 132.8 89.0 422 439/454
PyMAF-X (HR48) f SMPL-X 0.89 125.7 84.0 35.0 44.6/45.6 124.6 83.2 37.9 42.5/43.7

4.5 Ablation Study Table 7

In this part, we will perform ablation studies under var-
ious settings to validate the key components proposed in
PyMAF and PyMAF-X. The efficacy of the mesh-aligned
features, pyramidal design, auxiliary dense supervision,
and spatial alignment attention proposed in PyMAF will
be validated on Human3.6M [134]. As the Human3.6M
dataset includes large-scale amounts of images and the
corresponding ground-truth 3D labels, ablation approaches
of PyMAF are trained and evaluated on Human3.6M. As
for the proposed adaptive integration in PYMAF-X, ablation
approaches are evaluated on EHF [21], where different
approaches are trained under the same setting.

Efficacy of Mesh-aligned Features. In PyMAF, mesh-
aligned features provide the current mesh-image alignment
information in the feedback loop, which is essential for
better mesh recovery. To verify this, we alternatively replace
the mesh-aligned features with the global features or the
grid features uniformly sampled from spatial features as the
input for parameter regressors. Table 7 reports the perfor-
mance of approaches using different types of features in the
feedback loop. The results under the non-pyramidal setting
are also included in Table 7, where the grid and mesh-
aligned features are extracted from the feature maps with
the highest resolution (i.e., 56 x 56), and the mesh-aligned
features are extracted on the reprojected points of the mesh
under the mean pose at ¢ = 0. Note that all approaches in
Table 7 do not use auxiliary supervision.

Unsurprisingly, using mesh-aligned features yields the

Ablation study on using different types of feedback features for
refinement. No auxiliary supervision is applied.

Feedback Feat. Pyramid? MPJPE  PA-MPJPE
Global (Baseline) 84.1 55.6
Grid No 80.5 54.7
Mesh-aligned 79.6 53.4
Grid 79.7 54.3
Mesh-aligned Yes 76.8 50.9

best performance under both non-pyramidal and pyramidal
designs. The approach using the grid features sampled
from spatial feature maps has better results than global
features but is worse than the mesh-aligned counterpart.
The mesh-aligned solution achieves even more performance
gain when using pyramidal feature maps since multi-scale
mesh-alignment evidence is leveraged in the feedback loop.
Though the grid features contain primary spatial cues on
uniformly distributed pixel positions, they can not reflect
the alignment status of the current estimation. This implies
that mesh-aligned features are the most informative ones for
the regressor to rectify the current mesh parameters.
Benefit from Auxiliary Supervision. The auxiliary pixel-
wise supervision helps to enhance the reliability of the
mesh-aligned evidence extracted from spatial features. Us-
ing alternative pixel-wise supervision such as part segmen-
tation rather than dense correspondences is also possible in
our framework. In our approach, these auxiliary predictions

1. https:/ /agora-evaluation.is.tuebingen.mpg.de
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Table 8
Ablation study on using different auxiliary supervision settings and
input types for regressors.

Aux. Supv. Input Type MPJPE  PA-MPJPE
None Feature 76.8 50.9
Part. Seg. 108.1 75.9
Part. Seg. Feature 75.5 49.2
Feature*Part. Seg. 77.6 51.1
Dense Corr. 77.8 54.7
Dense Corr. Feature 75.1 48.9
Table 9
Ablation study on the spatial alignment attention.
Feedback Feat. £ PVE MPJPE PA-MPJPE
Mesh-aligned 89.1 76.8 50.9
+ Grid 88.9 76.6 51.0
+SAA 85.1 73.6 50.1

are solely needed for supervision during training since the
point-wise features are extracted from feature maps. For
more in-depth analyses, we have also tried extracting point-
wise features from the auxiliary predictions, i.e., the input
type of regressors are intermediate representations such
as part segmentation or dense correspondences. Table 8
compares different auxiliary supervision settings and input
types for regressors during training. Using part segmen-
tation is slightly worse than our dense correspondence
solution. Compared with the part segmentation, the dense
correspondences preserve clean and rich information in
foreground regions. Moreover, using feature maps for point-
wise feature extraction consistently performs better than
auxiliary predictions. This can be explained by the fact that
using intermediate representations as input for regressors
hampers the end-to-end learning of the whole network.
Under the auxiliary supervision strategy, the spatial feature
maps are learned with the signal backpropagated from both
auxiliary prediction and parameter correction tasks. In this
way, the background features can also contain information
for mesh parameter correction since the deep features have
larger receptive fields and are trained in an end-to-end man-
ner. As shown in Table 8, when the mesh-aligned features
are masked with the foreground region of part segmentation
predictions, the performance degrades from 75.5 mm to 77.6
mm on MPJPE.

Efficacy of Spatial Alignment Attention. In our ap-
proach, Spatial Alignment Attention (SAA) is designed to
enable the awareness of the whole image context in the
regressor. To validate its efficacy, we replace the spatial
alignment attention with fully-connected layers to fuse the
grid and mesh-aligned features. As reported in Table 9,
simply fusing the grid features (the second row) only brings
marginal improvements in comparison with the approach
using the spatial alignment attention (the third row). The
performances of PYMAF with or without spatial alignment
attention across each refinement iteration are reported in
Table 10, where the PyMAF with spatial alignment attention
improves the reconstruction results more quickly.

Efficacy of Adaptive Integration. In PyMAF-X, an
elbow-twist compensation is used to adaptively correct the
elbow poses in the integration of body and hand estima-
tions. Such an adaptive integration strategy could produce
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Table 10
Reconstruction errors across different iterations in the feedback loop.
SAA denotes the spatial alignment attention.

Method Metric My My Mo Ms

PVE 3121 970 905 887

PyMAF w /o SAA MPJPE 2740 803 766 75.1
PA-MPJPE | 131.7 521 499 489

PVE 3121 912 83.6 818

PyMAF w. SAA MPJPE 2740 782 732 721
PA-MPJPE | 131.7 51.6 49.8 48.7

[]

Image

[] [ ]

Copy-Paste  Learned

Adaptive

Fig. 9. Visual comparison of different integration strategies under the
cases of challenging wrist poses.

physically-plausible wrist poses while preserving the mesh-
image alignment. We investigate different integration strate-
gies and compare our solution with two alternatives: i) a
learned integration strategy similar to PIXIE [17], which
predicts the wrist poses based on the fused features of
body and hand features; ii) the naive copy-paste integration
strategy [16], which calculates the wrist poses based on
the estimated body and hand poses. Table 11 reports the
performances of the three different integration strategies on
the EHF dataset. Here, we use the MPJPE of body and hand
joints to measure the mesh-image alignment and the PA-
PVE of wrist vertices to measure the physical plausibility
of the wrist joint. As shown in the first row, the learned
integration strategy can also produce natural wrist poses but
degrade the alignment of hand parts in the full-body model.
Compared with the learned and copy-paste strategies, the
proposed adaptive integration produces both well-aligned
and natural poses of the body, hand, and wrist parts. Fig. 9
provides a visual comparison of different integration strate-
gies under challenging cases in real-world scenarios. We can
see that our adaptive integration maintains the alignment
and effectively improves the plausibility of the wrist poses
by leveraging the twist compensation from elbow joints.

5 CONCLUSION

In this paper, we first present Pyramidal Mesh Alignment
Feedback (PyMAF) for regression-based human mesh re-
covery and further extend it as PYMAF-X for full-body mesh
recovery. PYMAF is primarily motivated by the observation
of the reprojection misalignment between the parametric
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Table 11
Ablation study on the usage of the learned, copy-paste, and the
proposed adaptive integration strategies.

MPJPE PA-PVE
Integration (Alignment) (Plausibility)
Body Hands Wrist
Learned 64.9 423 5.8
Copy-Paste 64.9 31.2 6.7
Adaptive (Ours) 64.9 31.2 59

mesh results and the input images. At the core of PyMAF,
the parameter regressor leverages spatial information from a
feature pyramid to correct the parameter deviation explicitly
in a feedback loop based on the alignment status of the
currently estimated meshes. To achieve this, given a coarse-
aligned mesh estimation, the mesh-aligned features are first
extracted from the spatial feature maps and then fed back
into the regressor for parameter rectification. Moreover, an
auxiliary dense supervision is employed to enhance the
learning of mesh-aligned features while spatial alignment
attention is introduced to enable the awareness of the global
contexts in our deep regressor. When extending PyMAF for
full-body model recovery, an adaptive integration with the
elbow-twist compensation strategy is proposed in PYMAF-X
to produce natural wrist poses while maintaining the align-
ment performances of part-specific PYMAF. The efficacy of
PyMAF and PyMAF-X is validated on indoor and in-the-
wild datasets, where our approaches effectively improve
the mesh-image alignment over the baseline and previous
regression-based solutions.

Limitations and Future Work. In our experiments, we
found that PYMAF-X fails to reconstruct interacting hands
due to the separated regression of two hands. Meanwhile,
when handling images with strong perspective distortions
or with only upper-torso observations, common issues such
as bent legs and erroneous limb poses remain unsolved in
this work. We will leave these issues for future work to
incorporate the merits of recent datasets [146], [147] and
solutions such as SPEC [93], PIXIE [17], Hand4Whole [18],
and IntagHand [10] into our framework.

Moreover, similar to existing methods [15], [16], [17],
[18], the full-body alignment performance of PyMAEF-X
heavily relies on the pose and shape estimation of the
body expert. Due to the lack of full-body mesh annotations,
the estimated body shapes are typically inaccurate in chal-
lenging cases, resulting in erroneous bone lengths of arms
and coarse alignment of hands. Combining PyMAF-X with
SPIN [3], EFT [44], or NeuralAnnot [45] for the generation
of more precise pseudo 3D ground-truth full-body mesh
annotations on in-the-wild data would be interesting future
work. Besides, the elbow-twist rotations are adjusted empir-
ically in PYMAF-X based on the twist components of wrist
poses. Learning the compensation angle o, via networks is
also possible when large-scale full-body mesh annotations
are available.
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Fig. 10. Visualization of the selected vertices on the body, hand, and
face models for mesh-aligned feature extraction.

Fig. 11. Visualization of the rendered dense correspondences in resolu-
tions of 56 x 56 for the body, hand, and face meshes. From left to right:
the IUV [66] map for a body model, the PNCC [126] maps for hand and
face models.

APPENDIX A
MORE IMPLEMENTATION DETAILS

Attention Module. We follow Mesh Graphormer [69] to
implement the attention module for the grid and mesh-
aligned feature fusion. We simply use a single attention
block for each iteration because we found that a single
block brought enough performance grains while using more
attention blocks merely increased memory consumption.

Mesh Sampling. For body and hand meshes, we simply
use the down-sampling matrix provided in GraphCMR [2]
and Mesh Graphormer [69] to reduce the vertex number
for mesh-aligned feature extraction. For face meshes, we
manually select the vertices in the front face region con-
sidering that the expression information concentrates on
the front face. For body-only PyMAF, the dimension of
the mesh-aligned features is reduced to match the feature
dimension in HMR [1] for more fair comparisons. For hand-
and face-only PyMAF, we do not strictly abide by this rule
but simply replace SMPL with MANO/FLAME during the
implementation. Fig. 10 visualizes the selected vertices on
the body, hand, and face meshes.

Auxiliary Dense Supervision. In the auxiliary dense
prediction task, the dense correspondence and part segmen-



JOURNAL OF IATEX CLASS FILES, VOL. X, NO. X, MONTH YEAR

(a) PA-MPJPE: 26.9, MPJPE: 74.3 (b) PA-MPJPE: 27.7, MPJPE: 43.4

Fig. 12. Examples of two reconstruction results. (a) A reconstruction
result with a lower PA-MPJPE value but worse mesh-image alignment.
(b) A reconstruction result with a higher PA-MPJPE value but better
mesh-image alignment.

tation (for ablation experiments) used for supervision are
rendered based on the pseudo ground truth meshes. Exam-
ples of the rendered dense correspondence are visualized in
Fig. 11. We choose to use the rendered dense correspondence
mainly based on the following reasons:

i) The dense correspondence can be regarded as a more
fine-grained part segmentation. In our method, we use the
IUV representation as dense correspondence for the body
expert, while using the Projected Normalized Coordinate
Code (PNCC) [126] for hand and face experts. Dense corre-
spondences are more general since PNCC does not need to
split the mesh into manually defined parts.

ii) The body part definition may vary from different
datasets while the rendered one is consistent. Moreover,
the rendering process can be done efficiently in batch using
the tools like PyTorch3D [148]. The costs of rendering part
segmentation and dense correspondences are almost the
same for the PyTorch3D renderer.

iii) There is only a limited number of datasets providing
the annotated part segmentation and dense correspondence,
while the pseudo ground truth meshes are typically avail-
able for common datasets thanks to previous work such as
SPIN [3] and EFT [44].

Hand Visibility. We simply use three FC layers to pre-
dict hand visibility based on the hand-only mesh-aligned
features. The pseudo visibility confidence used for supervi-
sion is calculated based on the proportion of the visible hand
keypoints annotated in the whole-body COCO [141] dataset.
For example, assume that there are 15 visible keypoints and
the total number of hand keypoints is 21, then the pseudo
visibility confidence of this hand is about 0.714 (15/21).

APPENDIX B
ABOUT METRICS

Though the PA-PVE and PA-MPJPE are widely adopted in
the 3D pose estimation task, these two metrics can not fully
reveal the mesh-image alignment performance since they
are calculated after rigid alignment. As depicted in Fig. 12,
a reconstruction result with a lower PA-MPJPE value can
have a higher MPJPE value and worse alignment between
the reprojected mesh and image.
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APPENDIX C
ABOUT DATASETS

Following the practices of previous work [1], [3], [5],
we train our body model regression network on sev-
eral datasets with 3D or 2D annotations, including Hu-
man3.6M [134], MPI-INF-3DHP [139], LSP [47], MPII [46],
COCO [48]. For hand-only and full-body model regression,
FreiHAND [8], InterHand2.6M [9], FFHQ [149], and COCO-
WholeBody [141] are also used for training. Here, we pro-
vide more descriptions of the datasets to supplement the
main manuscript.

Human3.6M [134] is commonly used as the benchmark
dataset for 3D human pose estimation, consisting of 3.6 mil-
lion video frames captured in the controlled environment.
The ground truth SMPL parameters in Human3.6M are
generated by applying MoSH [150] to the sparse 3D MoCap
marker data, as done in Kanazawa et al. [1]. The original
videos are down-sampled from 50fps to 10fps, resulting in
312,188 frames for training. Following the common proto-
cols [1], [19], [64], our experiments use five subjects (S1,
S5, S6, 57, S8) for training and two subjects (59, S11) for
evaluation. The original videos are also down-sampled from
50 fps to 10 fps to remove redundant frames, resulting in
312,188 frames for training and 26,859 frames for evaluation.

3DPW [133] is captured in challenging outdoor scenes
with IMU-equipped actors under various activities. This
dataset provides accurate shape and pose ground truth
annotations. Following the protocol of previous work [3],
[135], we do not use its data for training by default unless
specified in the table.

MPI-INF-3DHP [139] is a 3D human pose dataset cov-
ering more actor subjects and poses than Human3.6M. The
images of this dataset were collected under both indoor and
outdoor scenes, and the 3D annotations were captured by
a multi-camera marker-less MoCap system. Hence, there is
some noise in the 3D ground truth annotations. The training
set includes 8 subjects and there are 96,507 frames down-
sampled from videos used for training.

LSP [47] and LSP-Extended [140] are 2D human pose
benchmark datasets, containing person images with chal-
lenging poses. There are 14 visible 2D keypoint locations
annotated for each image and 10,428 samples used for
training.

MPII [46] is a standard benchmark for 2D human pose
estimation. There are 25,000 images collected from YouTube
videos covering a wide range of activities. We discard those
images without complete keypoint annotations, producing
14,667 samples for training.

COCO [48] and COCO-WholeBody [141] contain a large
scale of person images labeled with 17 body keypoints, 42
hand keypoints, and 68 face keypoints. We use COCO to
train body-only PYMAF and leverage the hand keypoints in
COCO-WholeBody during the training of hand- and face-
only PyMAF and PyMAF-X. Since this dataset does not
contain ground-truth meshes, we conduct a quantitative
evaluation on the 2D keypoint localization task using its
validation set, which consists of 50,197 samples.

EHF [21] contains 100 testing images of one subject
captured in lab environments. For each image, the corre-
sponding 3D scans and ground-truth SMPL-X [21] meshes
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are provided. EHF is used for testing only and is commonly
adopted as a full-body evaluation benchmark dataset in
literature [15], [17], [18].

AGORA [132] is a synthetic dataset with accurate SMPL-
X models fitted to 3D scans. Since the ground-truth labels
of its test set are not publicly available, the evaluation
is performed on the official platform?®. For evaluation on
AGORA, we use the training set of AGORA to finetune our
model.

FreiHAND [8] contains 130,240 samples for training and
3960 samples images for evaluation. For each sample in
the training set, the MANO [32] parameters recovered from
multi-view images are provided. We use this dataset for the
training and evaluation of the hand expert.

InterHand2.6M [9] is a large-scale real-captured hand
dataset, providing accurate MANO parameters of interact-
ing hands. We crop single-hand images from this dataset for
the training of the hand expert.

VGGFace2 [142] is a large-scale face dataset. The images
of this dataset are downloaded from Google and have large
variations in pose, age, and ethnicity. It contains about 3 mil-
lion images from training. We run the method of FAN [143]
and DECA [14] on its training set to generate the pseudo
ground truth facial landmarks and FLAME [33] models for
the training of the face expert.

Stirling3D [144] provides facial images with the ground-
truth 3D scans. The test set contains 2,000 facial images in
neutral expressions, including 1,344 low-quality (LQ) im-
ages and 656 high-quality (HQ) images. We follow previous
work [14], [15] to use it for evaluation only.

NoW [13] contains the facial images captured with an
iPhone X, and a separate 3D scan for each subject. Its test
set contains 1,702 images for evaluation. Since the ground-
truth scans of the test set are not publicly available, the
evaluation is performed by following the instructions on the
official website®. We follow previous work [14], [15] to use
this dataset for evaluation only.

APPENDIX D
MORE QUALITATIVE RESULTS

We provide more qualitative results of our method in this
section. In Fig 13, we visualize the estimated meshes after
each iteration, where it can be seen that PyYMAF can correct
the drift of body parts progressively and result in better-
aligned human models. In Fig. 14, the body mesh recovery
results of different methods on COCO are depicted for qual-
itative comparisons, where PyMAF convincingly performs
better than competitors and our baseline by producing
better-aligned and natural results. In Fig. 15, we provide
more full-body model reconstruction results on the COCO
validation set, where PyMAF-X can produce well-aligned
full-body model under challenging cases. In Fig.16, we
further visualize the reconstructed full-body models from
different viewpoints.

Cases under Occlusions. As pointed out in the main
paper, the adaptive integration is not applicable when the
hand part is invisible. To handle this, the visibility status of

2. https:/ /agora-evaluation.is.tuebingen.mpg.de
3. https:/ /now.is.tue.mpg.de/index.html
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Image Mo M, M M3

Fig. 13. Visualization of reconstruction results across different iterations
in the feedback loop.

Image

Baseline PARE [5] SPIN [3]

PyMAF

Fig. 14. Qualitative comparison of reconstruction results on the COCO
validation set.

hands is also predicted by the hand expert in PYMAF-X. In
cases of invisible hands, the full-body model adopts the de-
fault hand poses and the wrist poses estimated by the body
expert. Fig. 17 shows the example results of PYMAF-X when
the body or hands are occluded. We can see that PYMAF-X
produces reasonable full-body meshes under these cases.

Failure Cases. Due to the rotational pose representation
of the kinematic model, the full-body alignment of PyYMAF-
X heavily relies on the accuracy of body pose estimation.
Moreover, the misalignment may also occur when the body
shape is inaccurate since it affects the body bone length.
Besides, it is still challenging for PYMAF-X to handle chal-
lenging hand poses or interacting hands. Fig. 18 visualizes
some erroneous results of our approach, where PYMAF-X
produces misaligned results due to the issues mentioned
above.


https://agora-evaluation.is.tuebingen.mpg.de
https://now.is.tue.mpg.de/index.html
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Fig. 15. More examples of the full-body mesh recovery results of PyMAF-X on the COCO validation set. Best viewed zoomed-in on a color screen.
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Fig. 16. PyMAF-X results visualized from different viewpoints. For each example, from left to right: the input image, the overlay result, and the results
with rotations around the vertical axis. Best viewed zoomed-in on a color screen.
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Fig. 17. Example results of PyMAF-X when the body or hands are occluded. Samples come from the COCO validation set. Best viewed zoomed-in
on a color screen.

(a) Inaccurate bone length (body shape) (b) Inaccurate body pose

(c) Challenging hand pose (d) Interacting hands

Fig. 18. Misaligned reconstructions of our approach. Misalignment comes from (a) inaccurate bone length (body shape), (b) inaccurate body pose,
(c)(d) inaccurate hand poses under challenging hand poses, occlusions, and interactions. Samples come from the COCO validation set.



